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Abstract. The properties of negatively charged~ donor centres have been studied for
semiconductor quantum dots with the finite spherically symmetric confinement potential. The
energy levels of the ground state!§) and the excited states of both the spin-singléP(1

1'D, 2'S) and spin-triplet AP, 1D, 23S) configurations have been calculated by variational
means. It has been shown that the excited states obtheentre in quantum dots are bound

for sufficiently strong confinement potential. The conditions of binding for the excited states
have been determined as functions of the potential-well depth and quantum-dot radius. The
formation of the bound excited states of the centre is a new property, which results from

the confinement of electrons in the quantum dot. A possible application of the present results
to the H™ ion trapped in a microcavity is discussed.

1. Introduction

The D~ donor centres in semiconductor nanostructures have recently been investigated
from both the experimental [1-6] and theoretical [7—12] points of view. The
experimental evidence for the~ centre has been found in multiple-quantum-well structures
[1]. A possible experimental observation @~ centres has been discussed [2] for
GaAgAl,Ga_As quantum dots. In bulk materials, the weakly localized, shallow-level
donor centreD~ can be treated in the framework of the effective-mass approximation as
a solid-state analogue of aHon. According to the Hill theorem [13], the Hion in an
infinite space and the hydrogen-lik@~ centre in a bulk crystal possess only one bound
state with the spin-singlet configuration. The applied external magnetic field leads to a
formation of bound excited states of the Hon and D~ centre [14]. Transitions to the
excited states have been identified [3, 9] for the centres in multiple quantum wells in

the external magnetic field.

A quantum dot (QD) is a semiconductor nanostructure with a three-dimensional
confinement of electrons [15]. Recently the QDs have been fabricated in different shapes,
for example, disk-like (cylindrical) shape [2] and spherical [15, 16] shape. The spherically-
shaped QDs are formed from semiconductor nanocrystals embedded in either an isolating
[16] or a semiconducting matrix [15]. The conduction-band discontinuity between the QD
and surrounding material leads to an appearance of the effective confinement potential for
electrons. This potential can be approximated by a step function with the potential-well
region inside the QD and the potential-barrier region outside the QD. The confinement
potential essentially modifies the properties of electronic and impurity states in the QD. We
consider the influence of the confinement potential on the properties d theentre. As
in the bulk crystal, the ground state of tliE centre in the QD is always bound. There
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arises a problem of the existence of bound excited states abtheentre in the QD. We
expect that the confinement potential can lead to a creation of bound excited states of the
D~ centre.

The ground-state energy of th2~ centre was estimated by variational means [17, 18]
for the QD with the confinement potential of finite depth. Using the results of the second-
order perturbation theory for the infinitely deep potential-wellsBer and Proetto [19] put
the hypothesis that—as for the"Hon—only one bound state ab~ exists in the QD of
the finite potential well.

The present paper provides a proof of the opposite statement for the excited states. We
show that several excited states can be bound foithecentre in the QD with the finite
confinement potential. We have considered the S, P and D states with both the singlet and
triplet spin configuration and determined the conditions of binding for the excited states.
We have also calculated the dipole-allowed transition energies and the expectation values
of interparticle distances. Preliminary results of this work were announced in [20]. The
present paper consists of the complete results with a detailed discussion.

2. Theory

The D~ centre in a semiconductor spherical quantum dot can be described as a system
composed of two electrons and a positively charged donor impurity located at the centre
of the spherical potential-well region. We consider a single quantum dot embedded in a
matrix material. We assume the validity of the effective-mass approximation and neglect
the difference of the electron band masses and dielectric constants between the QD region
and the surrounding medium. The Hamiltonian of the system has the form
H=—vf—v§—3—3+3+V(r1)+\/(r2) (1)
rLoor2 T
wherer; = |r;| (i = 1,2) are the electron—donor centre distanegs,= |r1 — 73| is the
electron—electron separation, the donor RydbRpg= m.e*/2h%s? is the unit of energy,
the donor Bohr radius;, = h2s/m.e? is the unit of lengthm, is the conduction-band
electron effective mass, ands the static dielectric constant. The confinement potential for
electrons in the QD is assumed to be a spherically symmetric potential well of finite depth,
ie.

V) = 0 forr < R @
R RTA forr > R

whereR is the radius of the QD.
In order to find solutions of the eigenproblem for Hamiltonian (1), we apply the
variational method and propose the trial wavefunction in the form

Wi(r, mo) = expl-a(r+r2)] Y ch,,(L£ Prri'rsrl,PL(cost)  (3)
mnp

where the sign+(—) corresponds to the spin singlet (triplet) stafejs the total-angular
momentum quantum numbef;, is the permutation operator, which interchanges the
electron indices, i.e. + 2, ¢k~ anda are the linear and non-linear variational parameters,
respectively,P, (cost;) is the Legendre polynomial of orddr, andg; is the angle between
thez-axis and vector;. We consider the S, P and D states with= 0, 1 and 2, respectively.
The sums in (3) run over integral values of parameterg and p, which are chosen as
follows: m = my, ..., 12, wherem; = O for the singlet S states;; = 1 for the triplet S
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states and the P states ang = 2 for the D statesy =0, ..., ny, wheren, = m andm — 1

for the singlet and triplet S states, respectively, apd= 12 for the P and D stateg; = 0

and 1 for the S states, apd= 0 for the P and D states. We have omitted the dependence of

the trial wavefunction omy, for the P and D states, since the electron—electron correlation

plays a minor role for the excited states with# 0. The numbers of terms in expansion

(3) applied in the present calculations were the following: 181 for the singlet S states, 156
for the P states and triplet S states, and 143 for the D states.

The exact wavefunction for the electronic system in the spherical potential well of finite
depth obeys the following boundary conditions foe= R, i.e. at the QD boundary: the
wavefunction and its first derivative are continuous, but the second derivative possesses a
finite jump and changes its sign, which results from the finite jump of the potential energy.
This means that the wavefunction changes its curvature at the QD boundary. Owing to the
presence of the polynomial terms, the proposed trial wavefunction (3) is flexible enough and
fulfills this boundary condition. Moreover, the application of trial wavefunction (3) enables
us to calculate all the matrix elements of Hamiltonian (1) analytically. A more detailed
discussion of the properties of the proposed variational wavefunction is given in section 3.

In order to solve the problem of existence of bound excited states foDtheentre
in the QD, we have to determine the binding energy of the system. The binding energy of
the vth quantum state of th®~ centre is defined as the difference between the continuum-
threshold energy and the energy of the considered state dbtheentre, i.e.

Wy = Eg + Ej — E; (4)

where EJ is the ground-state energy of tie° donor centre E{ is the lowest energy of
the electron in the potential-barrier region, af¢ is the energy of theth state of the
D~ centre, i.e. the corresponding eigenvalue of Hamiltonian (1). For the confinement
potential (2),E; = Vo. The continuum threshold corresponds to the system composed of
the one electron bound in the ground state of the nedfatonor centre in the QD and
the second—occupying the lowest-energy conduction-band state in the barrier region. The
binding energy defined by (4) possesses the following physical interpretation: this is the
minimum energy, which is required to liberate one electron from the bound state bfthe
centre located in a single QD and transfer it into the barrier region. After this dissociation
process, the second electron is bound in the ground state @%mentre. The considered
vth state of theD~ centre is bound W, > 0.

We mention that another definition of the binding energy was used in papers [17-19],
namely

W, = E§ + E, — E; (5)

where E¢ is the ground-state energy of the electron bound in the quantum-dot potential
well. Let us note that in formulae (4) and (5) two different electron energies are used: the
energyE; in (4) is associated with the conduction-band state of the barrier region, while
Ey, in (5) corresponds to the bound state of the electron confined in the QD potential-well
region. The physical meanings ®f, and W, are different. The quantity¥, (5) can be
interpreted as the energy needed to liberate one electron fron»theentre and move it

into the lowest-energy state of the electron confined within the another QD. This process
cannot occur for the single isolated QD. If the liberated electron were confined in the same
QD, the attractive potential of thB° centre would immediately bind it into thB~ state.

The ‘binding energy’ [17-19] defined by (5) corresponds to a process of tunnelling of the
liberated electron into the second QD without an impurity centre. However, the authors [17—
19] neglected a coupling between different quantum dots, which means that the probability
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of this tunnelling was taken to be zero. Therefore, unliKg the phgsical meaning dfT/V
is not quite clear for the single QD. Moreover the negative valu#&p{5) does not mean
that the considered state is unbound.

3. Results

Before performing the calculations for the two-electr@m centre, we checked the
applicability of our variational approach to the simple one-electron problems, i.e. the electron
and D° centre in the finite spherically symmetric potential well, for which the analytical
solutions are known. We have applied to these systems the following trial wavefunction

12
Y(r) =Y car” expl—ar) (6)
n=0

which is a simple one-dimensional version of that given by (3). The shape of wavefunction
(6) received from the variational calculation is shown and compared with the exact results
in figure 1(a) (for the one electron in the QD) and figure 1(b) (for Ifecentre in the QD).

We see that the variational and exact wavefunctions coincide with each other. In particular,
we note that the variational wavefunction of type (6) correctly reproduces the change of
curvature forr = R. The ground-state energy of tHz° centre calculated with the help of

trial wavefunction (6) is also in very good agreement with the results obtained by analytical
methods by Zhu [21] and Buczko and Bassani [22].

The two-electron trial wavefunction (3) has also been tested by applying it to the He
atom and H ion. Table 1 provides the comparison of the present results with the exact
eigenvalues [23, 24] for the ground and excited states of the He atom. For the ground state
of the D~ centre in the QD, we can also compare our results with those of the other authors
[17-19]. For this purpose, we have calculated the ground-state ‘binding energy’ defined by
(5). Here we give the exemplary results, for example, Wor= 40Rp, and R = 0.1 and
0.3ap, we obtain 0.0573 and.26Rp, respectively, while the corresponding values taken
from [17, 18] are 0.0526 andZ6R . For all other values of the QD parameters, the present
results for the ‘binding energy’ (5) are usually larger than those ofettal [17, 18], which
is caused by a larger flexibility of the trial wavefunction used in the present work. Let us
note that the present approach is also suitable for the excited states.

Table 1. Energy levels of the He atom in atomic Rydbergs. The ‘exact’ results are taken from
[23, 24].

State Present ‘Exact’

11s -5.8074 —5.8074
23S —4.3503 —4.3504
21S  —4.2906 —4.2919
13P  —4.2647 —4.2663
1P —4.2452 —4.2477

Recently the problem of a Hion constrained in a microcavity has been of interest
in atomic physics [25]. We have calculated the ground-state energy of thomin a
spherical potential well of finite depth. The present results are listed in table 2. Table 2
also shows the results for the"Hon in the infinitely deep potential well obtained by the
guantum Monte Carlo method [25]. We can observe that the confinement potential of finite
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Figure 1. (a) Wavefunctions of 1s (open symbols) and 2s (full symbols) states for the electron in
the QD withVp = 40Rp, R = 1.0ap as functions of (electron-QD centre distance). Full curves
correspond to the exact wavefunctions and circles, trial wavefunctions (6). The wavefunctions
are unnormalized and plotted in arbitrary unitg, is the donor Bohr radius. (b) Wavefunctions

of 1s and 2s states for th@° centre in the same QD.

depth leads to a lowering of the ground-state energy. For IRrghe effect of confinement
decreases and both the energy eigenvalues approach each other. In particiRas for,

we deal with the H ion in an infinite space. The results of tables 1 and 2 also show that
trial wavefunction (3) is sufficiently flexible and yields reliable results for the two-electron
systems in the infinite space as well as in the microcavity.
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20

Figure 2. Energy levels ofD~ states in a QD as functions of radiisfor the potential-well
depthVp = 10Rp. Curves (a) and (b), (c), (d) and (e) correspond to the continuum threshold
and 2S, 2S, 1P and 2P excited states, respectively, curve (f) shows the sum of ground-state
energies of aD? centre and an electron in the QD, curve (g) displays the ground-state energy
of the D~ centre. The donor Rydberg), is the unit of energy, the donor Bohr radiug is

the unit of length.

For the D~ centre in the QD, we have performed the calculations for the ground state
(11S) and the following excited states!P, P, 1D, 13D, 2'S and 3S. Figure 2 shows the
energy eigenvalues as functions of QD radius for the fixed potential-well dgpth10R .

We see that for the sufficiently largk the energy levels of all the considered states are
located below the continuum-threshold energy. Therefore the excited statedof ttentre

are bound. Moreover we have received the correct bulk-crystal limits, i.ek fer 0, the
ground-state energ¥ (1'S) — 2V, — 1.055R, and for R — oo, E(1'S) — —1.055R),

and all the excited-state energy levéls — —Rp. The energy levels of the!D and £D

states are located above (but very close to) those of ¥#8eafd 3S, respectively, and are

not shown in figure 2. The corresponding numerical results for all the states considered
are listed in table 3. Curve (f) in figure 2 shows the sum of the ground-state energies of
the D° centre and the electron in the spherical potential well. The excited-state energy
levels are located above this curve, which is in agreement with the suggestidiisséB

and Proetto [19]. However, according to the discussion in section 2, this does not mean a
lack of binding of the excited states.

Table 3 shows a comparison of the calculated two-electron energy levels for the spherical
QD without and with the donor centre. In both the cases, trial wavefunction (3) has been
applied. For the excited states of two electrons) (@ith the same spin, we obtain the
same order of energy levels as that for the one electron in the spherical potential well,
i.e. E1p < E1p < Ezs. The influence of the attractive donor centre shifts all the energy



Energy spectrum ob~ centres in spherical quantum dots 7581

Table 2. Ground-state energy of the'Hon at a centre of a spherical microcavity as a function
of radiusR. The present results are given fgg = 40Rp, QMC denotes the quantum Monte
Carlo results [25] forVy = oo. The last number in the third row (fak = o) is the exact value
[23]. The unit of energy is the atomic Rydberg, the unit of length is the atomic Bohr radius.

R 2 4 6 8 10 12 15 [}

Present  0.8998-0.7784 —0.9926 —1.0364 —1.0487 —1.0529 —1.0548 —1.0554
QMC 1.4462 —0.7588 —0.9916 —1.0360 —1.0478 —1.0514 —1.0522 —1.0555

Table 3. Energy levels of two-electron QDs withoutef2and with (D) the donor centre for
the QD parametersVy = 40Rp and R = 2.5ap. The donor Rydber@p, is the unit of energy.

State 1S 1P 1p 1°D 1D 23s 2s

2e 3.692 4698 5192 6.316 6.707 7.188 7.385
D~ -0.098 1435 1.871 3.198 3.480 3.014 3.396

Table 4. Critical values of the paramete6, (7) determining the binding of the excited states
of the D~ centre in the QD (in unitRpa?).

13p 1p 2s 2s 1D 1D

9.084 10.21 1982 21.02 20.63 21.18

levels downwards. In particular, both the singlet and triplet 2S levels are shifted below the
corresponding 1D levels.

It is well known that for a spherical potential well of finite depth the one-electron states
become bound if the ‘effective capacity’ of the potential well, igR?, exceeds certain
critical values, for exampler2/4, =2, 272 and 92/4 (in units of Rpa?) for the states 1s,
1p, 1d and 2s, respectively. We have found that the conditions of binding for the excited
states of theD~ centre in the QD can be parametrized in a similar way, i.e.

VoR? > C, (7)

which means that theth state of theD~ centre is bound if the effective capacity of the
QD exceeds the critical valu€,. The values ofC,, estimated in the present paper, are
quoted in table 4. According to table 4, the number of bound excited states dbthe
centre increases with the increasing effective capacity of the QD, which is consistent with
the similar property of the one-electron states.

We have also calculated the experimentally accessible transition energies. Figure 3
shows the ground-state binding energy and th® 4> 1'P transition energy as functions
of the QD radius and potential-well depth. The results for the confinement potential of
the infinite depth are also shown. If théPlstate is bound, i.e. inequality (7) is filled,
the dipole-allowed iS — 1'P radiative transitions can take place. The transition energy
increases with the decreasing dot size and reaches the maximum value of about half of the
potential-well depth for the QD radius, at which th&P1state ceases to be bound. Then,
the 'S — 1P transition energy becomes equal to tA8 binding energy, i.e. the energy
of the transition of the electron into the barrier region.

Table 5 shows the values of transition energy calculated for the QD nanostructure
made from the GaAs nanocrystal embedded iRG¥_,As matrix. Forx = 0.2, the
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Figure 3. Ground-state binding energy (full curves) antB1- 11P transition energy (broken
curves) as functions of quantum-dot radiRsfor the potential-well depth/y = 10, 20, 40 and
100Rp. The dotted curve shows the transition energy for the infinitely deep potential well. The
units are the same as in figure 2.

following values of the parameters have been taken in= 0.212 eV, Rp = 5.3 meV
andap = 10 nm. For comparison, we have also listed in table 5 the energies of dipole-
allowed radiative transitions between the corresponding states of one- and two-electron
systems confined in the QD as well &’ donor centre in the QD. We notice that the
transition energies for the onedjland two (2) confined electrons as well as for ti’

and D~ donor centres in the QD are in pairs close to each other, which means that the
corresponding radiative transitions could be hardly distinguishable.

Table 5. Calculated energy of dipole-allowed radiative transitions between the states with
andL = 1 of one electron (@), two electrons (2), D° and D~ donor centres and binding energy
W for the D~ ground state in the Gai8lg2GasAs quantum dot of radiu®. The results
for 1e and D° correspond to the 1s> 1p transitions and those for2nd D~ —11S — 11p
transitions. The dash (—) means that tH® ktate is unbound. The radius is expressed in nm,
the energy in meV.

R 1le 2¢ DO D~ W

5 970 — 1125 — 106.5
10 40.0 421 46.3 455 176.3
20 117 133 16.0 154 2025
30 55 6.8 9.1 8.5 208.3
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Having at our disposal the optimized trial wavefunction, we have also calculated the
expectation values of electron—don(@r;)) and electron—electrofir,,)) distances. Figure 4
shows the results for the ground st&1éS) and the excited stat@'S) as functions of the
QD radius. The ground-state interparticle distances equal to those forthenH24] in
the bulk-crystal limit, i.e. forR = 0, possess a minimum for smatl, and next increase
reaching again the bulk-crystal values for lae For the excited 5 state, the curves in
figure 4 begin at this value aR, which corresponds to the critical binding for this state.
The interparticle distances for the excited state increase almost linearlyRwithich is a
manifestation of a physical nature of binding of the excited state in the QD. This binding
mainly results from the confinement of electrons in the QD. Therefore, the interparticle
separations grow proportionally tB, but remain smaller than the QD radius. We have
obtained similar results for the average distances for the other excited states.

Figure 4. Expectation values of interparticle distances for the centre in the QD with

Vo = 40Rp as functions of radiu®. Curves (a) and (b) show the results for the ground state
(11S): electron—donorry) and electron—electrokr1,) distances, and curves (c) and (d) the
excited-state (5): (r1) and(r12), respectively. The donor Bohr radiug is the unit of length.

4. Discussion

The present calculations show that the energy spectrum dbtheentre in the QD exhibits

the following characteristic properties: (i) the spin-triplet states possess lower energy than
the corresponding spin-singlet states; (ii) the energy levels of the 2S states are located above
those of the 1P states, i.e. the Lamb shift (2S—1P energy difference) is positive; (iii) the 2S
states possess lower energy than the corresponding 1D states with the same spin. Property
(i) corresponds to the same order of energy levels for the He atom in the infinite space (cf
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table 1), i.e. it results from the bulk-like behaviour of the centre. However, the positive
Lamb shift (property (ii)) is opposite the negative Lamb shift observed for the He atom (cf
table 1), but is compatible with the order of the 2S and 1P energy levels of one electron in
the spherical potential well. Moreover, the same order of the 2S and 2P energy levels has
been obtained for the electron pair confined in the QD (cf table 3). The 25-1D energy-level
order (property (iii)) is caused by the non-vanishing probability of finding the electron at
the Coulomb centre in the S state. Therefore, the bound states @ftheentre in the QD
possess a mixed bulk-like/well-like character.

The properties of the~ states discussed above have been obtained by the variational
method, which yields reliable upper bounds on the total energy, i.e. lower bounds on the
binding energy (provided that the ground-state energies of the electron%oentre in the
QD are exact, which is true in our case). In turn, the lower bounds to the binding energy
lead to the lower bounds to the critical effective capacity of the QD (7). This means that the
bound excited states of the~ centre can appear in a broader class of QD nanostructures
than these determined by the values given in table 4.

In the present work we have considered the six excited states dptheentre in the
QD. For these states we have determined the conditions of binding in the form of inequality
(7). We expect that the criteria of binding in form (7) are also valid for the higher excited
states of theD~ centre in the QD. A possibility of binding of a larger number of the
D~ excited states can be inferred from the following argument. The subsystems of
centre, i.e. the hydrogen-lik®° centre and the electron in the QD, possess infinite and
finite numbers of bound states, respectively. The quantum states @ theentre in the
QD are constructed from the corresponding quantum states of both the subsystems. As a
result, theD~ centre always forms one bound state and can form bound excited states for
the sufficiently strong confinement potential. The number of these states should be finite
and increases with the increasing radius and potential-well depth.

We would like to comment about the question how the present results can be applied to
the GaAgAl,Ga,_,As nanostructure (table 5) despite the change of the electron band mass
at the boundary of this QD, which is neglected in the present work. In order to answer this
question we have estimated the two-electron probability density for#Beafid 2S states
(cf figure 2b in [20]), which provides a measure of the penetration of electrons into the
barrier region. For the QD radiu® > ~ap, this penetration appears to be negligibly small
[20], which is caused by the presence of the potential barrier of the h&ight40R .

The effect of spatially variable electron band mass can be taken into account by
modifying the kinetic-energy operator in (1) according to the BenDaniel-Duke model [26].
Such a modification is equivalent to the explicit incorporation of the jump of the electron
band mass into the kinetic-energy operator in (1) together with the requirement that the
envelope wavefunctiorf for electrons in the spherical QD fulfills the boundary condition

Ldr 19

w b
mY dr mb dr

8

r—R— r—Rt

wherem? (m?) is the electron band mass of the potential-well (potential-barrier) region.
Taking onm? = 0.067m.o and mf = 0.084mn,9, Wherem,q is the electron rest mass, we
have solved the Schdinger equation for the electron amf centre in the spherical QD

by a finite-difference method, which allows us to include the jump of the electron band
mass and boundary condition (8) explicitly. The results (figure 5) show that taking into
account the change of the electron band mass at the Bdfs5a sAs boundary leads

to a slight lowering of the ground-state energy, i.e. increase of the binding energy. This
effect is negligibly small forR > ap, since the electron penetration into the barrier region



Energy spectrum ob~ centres in spherical quantum dots 7585

additionally decreases owing to the increase of the electron band mass JGajsAs.
These results provide the quantitative arguments for the neglect of the change of the electron
band mass at the QD boundary.

40

30

Figure 5. Ground-state energy of the electron abf centre in the spherical QD of radiug
calculated with the change of the electron band mass at the QD boundary included (broken
curves) and excluded (full curves). The values of material parameters correspond to the
GaAg/Alg2Gay gAs nanostructure.

As mentioned in section 3, an ion trapped in a microcavity [27] should exhibit properties
similar to those studied in the present work for charged donor centres in semiconductor QDs.
The present results could be applied to the idn confined in an ionic trap provided that
the confining potential was approximated by the spherical potential well. Based on the
results of the present paper, we expect that the bound excited states can exist for the H
ion trapped in an ultra-high vacuum microcavity by external electric fields. Therefore the
spectroscopic experiments with these ions could reveal the transitions between the excited
and ground states considered in the present work.

5. Summary

The present paper provides the proof of binding for the excited states @ theentre and
H~ ion, which are confined in a spherical microcavity. Such a microcavity can be formed
either in a solid material as a semiconductor quantum-dot nanostructure or in a vacuum as
an ionic trap. It has been shown that several excited states obthand H™ ions are
bound if the confinement potential is sufficiently strong. The criteria of the binding have
been determined in the simple analytical form.

The following physical interpretation can be given to an origin of binding of these
excited states: this property results from the confinement of electrons in the microcavity
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and the bound excited states of the two-electron systems correspond to those of the single
electron confined in the spherical potential well. We expect that the present results will be
helpful in planning future experiments for possible evidence of the excited states bf the
centre in a semiconductor quantum dot and idn in an ionic trap.
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