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Abstract. The properties of negatively chargedD− donor centres have been studied for
semiconductor quantum dots with the finite spherically symmetric confinement potential. The
energy levels of the ground state (11S) and the excited states of both the spin-singlet (11P,
11D, 21S) and spin-triplet (13P, 13D, 23S) configurations have been calculated by variational
means. It has been shown that the excited states of theD− centre in quantum dots are bound
for sufficiently strong confinement potential. The conditions of binding for the excited states
have been determined as functions of the potential-well depth and quantum-dot radius. The
formation of the bound excited states of theD− centre is a new property, which results from
the confinement of electrons in the quantum dot. A possible application of the present results
to the H− ion trapped in a microcavity is discussed.

1. Introduction

The D− donor centres in semiconductor nanostructures have recently been investigated
from both the experimental [1–6] and theoretical [7–12] points of view. The
experimental evidence for theD− centre has been found in multiple-quantum-well structures
[1]. A possible experimental observation ofD− centres has been discussed [2] for
GaAs/Al xGa1−xAs quantum dots. In bulk materials, the weakly localized, shallow-level
donor centreD− can be treated in the framework of the effective-mass approximation as
a solid-state analogue of a H− ion. According to the Hill theorem [13], the H− ion in an
infinite space and the hydrogen-likeD− centre in a bulk crystal possess only one bound
state with the spin-singlet configuration. The applied external magnetic field leads to a
formation of bound excited states of the H− ion andD− centre [14]. Transitions to the
excited states have been identified [3, 9] for theD− centres in multiple quantum wells in
the external magnetic field.

A quantum dot (QD) is a semiconductor nanostructure with a three-dimensional
confinement of electrons [15]. Recently the QDs have been fabricated in different shapes,
for example, disk-like (cylindrical) shape [2] and spherical [15, 16] shape. The spherically-
shaped QDs are formed from semiconductor nanocrystals embedded in either an isolating
[16] or a semiconducting matrix [15]. The conduction-band discontinuity between the QD
and surrounding material leads to an appearance of the effective confinement potential for
electrons. This potential can be approximated by a step function with the potential-well
region inside the QD and the potential-barrier region outside the QD. The confinement
potential essentially modifies the properties of electronic and impurity states in the QD. We
consider the influence of the confinement potential on the properties of theD− centre. As
in the bulk crystal, the ground state of theD− centre in the QD is always bound. There
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arises a problem of the existence of bound excited states of theD− centre in the QD. We
expect that the confinement potential can lead to a creation of bound excited states of the
D− centre.

The ground-state energy of theD− centre was estimated by variational means [17, 18]
for the QD with the confinement potential of finite depth. Using the results of the second-
order perturbation theory for the infinitely deep potential-well, Büsser and Proetto [19] put
the hypothesis that—as for the H− ion—only one bound state ofD− exists in the QD of
the finite potential well.

The present paper provides a proof of the opposite statement for the excited states. We
show that several excited states can be bound for theD− centre in the QD with the finite
confinement potential. We have considered the S, P and D states with both the singlet and
triplet spin configuration and determined the conditions of binding for the excited states.
We have also calculated the dipole-allowed transition energies and the expectation values
of interparticle distances. Preliminary results of this work were announced in [20]. The
present paper consists of the complete results with a detailed discussion.

2. Theory

The D− centre in a semiconductor spherical quantum dot can be described as a system
composed of two electrons and a positively charged donor impurity located at the centre
of the spherical potential-well region. We consider a single quantum dot embedded in a
matrix material. We assume the validity of the effective-mass approximation and neglect
the difference of the electron band masses and dielectric constants between the QD region
and the surrounding medium. The Hamiltonian of the system has the form

H = −∇2
1 −∇2

2 −
2

r1
− 2

r2
+ 2

r12
+ V (r1)+ V (r2) (1)

whereri = |ri | (i = 1, 2) are the electron–donor centre distances,r12 = |r1 − r2| is the
electron–electron separation, the donor RydbergRD = mee

4/2h̄2ε2 is the unit of energy,
the donor Bohr radiusaD = h̄2ε/mee

2 is the unit of length,me is the conduction-band
electron effective mass, andε is the static dielectric constant. The confinement potential for
electrons in the QD is assumed to be a spherically symmetric potential well of finite depth,
i.e.

V (r) =
{

0 for r < R

V0 for r > R
(2)

whereR is the radius of the QD.
In order to find solutions of the eigenproblem for Hamiltonian (1), we apply the

variational method and propose the trial wavefunction in the form

9L
±(r1, r2) = exp[−α(r1+ r2)]

∑
mnp

cLmnp(1± P12)r
m
1 r

n
2 r
p

12PL(cosθ1) (3)

where the sign+(−) corresponds to the spin singlet (triplet) state,L is the total-angular
momentum quantum number,P12 is the permutation operator, which interchanges the
electron indices, i.e. 1
 2, cLmnp andα are the linear and non-linear variational parameters,
respectively,PL(cosθi) is the Legendre polynomial of orderL, andθi is the angle between
thez-axis and vectorri . We consider the S, P and D states withL = 0, 1 and 2, respectively.
The sums in (3) run over integral values of parametersm, n andp, which are chosen as
follows: m = m1, . . . ,12, wherem1 = 0 for the singlet S states,m1 = 1 for the triplet S
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states and the P states andm1 = 2 for the D states;n = 0, . . . , n2, wheren2 = m andm−1
for the singlet and triplet S states, respectively, andn2 = 12 for the P and D states;p = 0
and 1 for the S states, andp = 0 for the P and D states. We have omitted the dependence of
the trial wavefunction onr12 for the P and D states, since the electron–electron correlation
plays a minor role for the excited states withL 6= 0. The numbers of terms in expansion
(3) applied in the present calculations were the following: 181 for the singlet S states, 156
for the P states and triplet S states, and 143 for the D states.

The exact wavefunction for the electronic system in the spherical potential well of finite
depth obeys the following boundary conditions forr = R, i.e. at the QD boundary: the
wavefunction and its first derivative are continuous, but the second derivative possesses a
finite jump and changes its sign, which results from the finite jump of the potential energy.
This means that the wavefunction changes its curvature at the QD boundary. Owing to the
presence of the polynomial terms, the proposed trial wavefunction (3) is flexible enough and
fulfills this boundary condition. Moreover, the application of trial wavefunction (3) enables
us to calculate all the matrix elements of Hamiltonian (1) analytically. A more detailed
discussion of the properties of the proposed variational wavefunction is given in section 3.

In order to solve the problem of existence of bound excited states for theD− centre
in the QD, we have to determine the binding energy of the system. The binding energy of
theνth quantum state of theD− centre is defined as the difference between the continuum-
threshold energy and the energy of the considered state of theD− centre, i.e.

Wν = E0
0 + Eeb − E−ν (4)

whereE0
0 is the ground-state energy of theD0 donor centre,Eeb is the lowest energy of

the electron in the potential-barrier region, andE−ν is the energy of theνth state of the
D− centre, i.e. the corresponding eigenvalue of Hamiltonian (1). For the confinement
potential (2),Eeb = V0. The continuum threshold corresponds to the system composed of
the one electron bound in the ground state of the neutralD0 donor centre in the QD and
the second—occupying the lowest-energy conduction-band state in the barrier region. The
binding energy defined by (4) possesses the following physical interpretation: this is the
minimum energy, which is required to liberate one electron from the bound state of theD−

centre located in a single QD and transfer it into the barrier region. After this dissociation
process, the second electron is bound in the ground state of theD0 centre. The considered
νth state of theD− centre is bound ifWν > 0.

We mention that another definition of the binding energy was used in papers [17–19],
namely

W̃ν = E0
0 + Eew − E−ν (5)

whereEew is the ground-state energy of the electron bound in the quantum-dot potential
well. Let us note that in formulae (4) and (5) two different electron energies are used: the
energyEeb in (4) is associated with the conduction-band state of the barrier region, while
Eew in (5) corresponds to the bound state of the electron confined in the QD potential-well
region. The physical meanings ofWν and W̃ν are different. The quantitỹWν (5) can be
interpreted as the energy needed to liberate one electron from theD− centre and move it
into the lowest-energy state of the electron confined within the another QD. This process
cannot occur for the single isolated QD. If the liberated electron were confined in the same
QD, the attractive potential of theD0 centre would immediately bind it into theD− state.
The ‘binding energy’ [17–19] defined by (5) corresponds to a process of tunnelling of the
liberated electron into the second QD without an impurity centre. However, the authors [17–
19] neglected a coupling between different quantum dots, which means that the probability
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of this tunnelling was taken to be zero. Therefore, unlikeWν , the physical meaning of̃Wν

is not quite clear for the single QD. Moreover the negative value ofW̃ν (5) does not mean
that the considered state is unbound.

3. Results

Before performing the calculations for the two-electronD− centre, we checked the
applicability of our variational approach to the simple one-electron problems, i.e. the electron
andD0 centre in the finite spherically symmetric potential well, for which the analytical
solutions are known. We have applied to these systems the following trial wavefunction

ψ(r) =
12∑
n=0

cnr
n exp(−αr) (6)

which is a simple one-dimensional version of that given by (3). The shape of wavefunction
(6) received from the variational calculation is shown and compared with the exact results
in figure 1(a) (for the one electron in the QD) and figure 1(b) (for theD0 centre in the QD).
We see that the variational and exact wavefunctions coincide with each other. In particular,
we note that the variational wavefunction of type (6) correctly reproduces the change of
curvature forr = R. The ground-state energy of theD0 centre calculated with the help of
trial wavefunction (6) is also in very good agreement with the results obtained by analytical
methods by Zhu [21] and Buczko and Bassani [22].

The two-electron trial wavefunction (3) has also been tested by applying it to the He
atom and H− ion. Table 1 provides the comparison of the present results with the exact
eigenvalues [23, 24] for the ground and excited states of the He atom. For the ground state
of theD− centre in the QD, we can also compare our results with those of the other authors
[17–19]. For this purpose, we have calculated the ground-state ‘binding energy’ defined by
(5). Here we give the exemplary results, for example, forV0 = 40RD andR = 0.1 and
0.3aD, we obtain 0.0573 and 2.36RD, respectively, while the corresponding values taken
from [17, 18] are 0.0526 and 2.36RD. For all other values of the QD parameters, the present
results for the ‘binding energy’ (5) are usually larger than those of Zhuet al [17, 18], which
is caused by a larger flexibility of the trial wavefunction used in the present work. Let us
note that the present approach is also suitable for the excited states.

Table 1. Energy levels of the He atom in atomic Rydbergs. The ‘exact’ results are taken from
[23, 24].

State Present ‘Exact’

11S −5.8074 −5.8074
23S −4.3503 −4.3504
21S −4.2906 −4.2919
13P −4.2647 −4.2663
11P −4.2452 −4.2477

Recently the problem of a H− ion constrained in a microcavity has been of interest
in atomic physics [25]. We have calculated the ground-state energy of the H− ion in a
spherical potential well of finite depth. The present results are listed in table 2. Table 2
also shows the results for the H− ion in the infinitely deep potential well obtained by the
quantum Monte Carlo method [25]. We can observe that the confinement potential of finite
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Figure 1. (a) Wavefunctions of 1s (open symbols) and 2s (full symbols) states for the electron in
the QD withV0 = 40RD,R = 1.0aD as functions ofr (electron-QD centre distance). Full curves
correspond to the exact wavefunctions and circles, trial wavefunctions (6). The wavefunctions
are unnormalized and plotted in arbitrary units,aD is the donor Bohr radius. (b) Wavefunctions
of 1s and 2s states for theD0 centre in the same QD.

depth leads to a lowering of the ground-state energy. For largeR, the effect of confinement
decreases and both the energy eigenvalues approach each other. In particular, forR = ∞,
we deal with the H− ion in an infinite space. The results of tables 1 and 2 also show that
trial wavefunction (3) is sufficiently flexible and yields reliable results for the two-electron
systems in the infinite space as well as in the microcavity.
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Figure 2. Energy levels ofD− states in a QD as functions of radiusR for the potential-well
depthV0 = 10RD . Curves (a) and (b), (c), (d) and (e) correspond to the continuum threshold
and 21S, 23S, 11P and 13P excited states, respectively, curve (f) shows the sum of ground-state
energies of aD0 centre and an electron in the QD, curve (g) displays the ground-state energy
of theD− centre. The donor RydbergRD is the unit of energy, the donor Bohr radiusaD is
the unit of length.

For theD− centre in the QD, we have performed the calculations for the ground state
(11S) and the following excited states: 11P, 13P, 11D, 13D, 21S and 23S. Figure 2 shows the
energy eigenvalues as functions of QD radius for the fixed potential-well depthV0 = 10RD.
We see that for the sufficiently largeR the energy levels of all the considered states are
located below the continuum-threshold energy. Therefore the excited states of theD− centre
are bound. Moreover we have received the correct bulk-crystal limits, i.e. forR → 0, the
ground-state energyE(11S) → 2V0 − 1.055RD and forR → ∞, E(11S) → −1.055RD
and all the excited-state energy levelsEν → −RD. The energy levels of the 11D and 13D
states are located above (but very close to) those of the 21S and 23S, respectively, and are
not shown in figure 2. The corresponding numerical results for all the states considered
are listed in table 3. Curve (f) in figure 2 shows the sum of the ground-state energies of
the D0 centre and the electron in the spherical potential well. The excited-state energy
levels are located above this curve, which is in agreement with the suggestion of Büsser
and Proetto [19]. However, according to the discussion in section 2, this does not mean a
lack of binding of the excited states.

Table 3 shows a comparison of the calculated two-electron energy levels for the spherical
QD without and with the donor centre. In both the cases, trial wavefunction (3) has been
applied. For the excited states of two electrons (2e) with the same spin, we obtain the
same order of energy levels as that for the one electron in the spherical potential well,
i.e. E1P < E1D < E2S. The influence of the attractive donor centre shifts all the energy
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Table 2. Ground-state energy of the H− ion at a centre of a spherical microcavity as a function
of radiusR. The present results are given forV0 = 40RD , QMC denotes the quantum Monte
Carlo results [25] forV0 = ∞. The last number in the third row (forR = ∞) is the exact value
[23]. The unit of energy is the atomic Rydberg, the unit of length is the atomic Bohr radius.

R 2 4 6 8 10 12 15 ∞
Present 0.8998−0.7784 −0.9926 −1.0364 −1.0487 −1.0529 −1.0548 −1.0554
QMC 1.4462 −0.7588 −0.9916 −1.0360 −1.0478 −1.0514 −1.0522 −1.0555

Table 3. Energy levels of two-electron QDs without (2e) and with (D−) the donor centre for
the QD parameters:V0 = 40RD andR = 2.5aD . The donor RydbergRD is the unit of energy.

State 11S 13P 11P 13D 11D 23S 21S

2e 3.692 4.698 5.192 6.316 6.707 7.188 7.385
D− −0.098 1.435 1.871 3.198 3.480 3.014 3.396

Table 4. Critical values of the parametersCν (7) determining the binding of the excited states
of theD− centre in the QD (in unitsRDa2

D).

13P 11P 23S 21S 13D 11D

9.084 10.21 19.82 21.02 20.63 21.18

levels downwards. In particular, both the singlet and triplet 2S levels are shifted below the
corresponding 1D levels.

It is well known that for a spherical potential well of finite depth the one-electron states
become bound if the ‘effective capacity’ of the potential well, i.e.V0R

2, exceeds certain
critical values, for example,π2/4, π2, 2π2 and 9π2/4 (in units ofRDa2

D) for the states 1s,
1p, 1d and 2s, respectively. We have found that the conditions of binding for the excited
states of theD− centre in the QD can be parametrized in a similar way, i.e.

V0R
2 > Cν (7)

which means that theνth state of theD− centre is bound if the effective capacity of the
QD exceeds the critical valueCν . The values ofCν , estimated in the present paper, are
quoted in table 4. According to table 4, the number of bound excited states of theD−

centre increases with the increasing effective capacity of the QD, which is consistent with
the similar property of the one-electron states.

We have also calculated the experimentally accessible transition energies. Figure 3
shows the ground-state binding energy and the 11S→ 11P transition energy as functions
of the QD radius and potential-well depth. The results for the confinement potential of
the infinite depth are also shown. If the 11P state is bound, i.e. inequality (7) is filled,
the dipole-allowed 11S→ 11P radiative transitions can take place. The transition energy
increases with the decreasing dot size and reaches the maximum value of about half of the
potential-well depth for the QD radius, at which the 11P state ceases to be bound. Then,
the 11S→ 11P transition energy becomes equal to the 11S binding energy, i.e. the energy
of the transition of the electron into the barrier region.

Table 5 shows the values of transition energy calculated for the QD nanostructure
made from the GaAs nanocrystal embedded in AlxGa1−xAs matrix. For x = 0.2, the
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Figure 3. Ground-state binding energy (full curves) and 11S→ 11P transition energy (broken
curves) as functions of quantum-dot radiusR for the potential-well depthV0 = 10, 20, 40 and
100RD . The dotted curve shows the transition energy for the infinitely deep potential well. The
units are the same as in figure 2.

following values of the parameters have been taken on:V0 = 0.212 eV,RD = 5.3 meV
and aD = 10 nm. For comparison, we have also listed in table 5 the energies of dipole-
allowed radiative transitions between the corresponding states of one- and two-electron
systems confined in the QD as well asD0 donor centre in the QD. We notice that the
transition energies for the one (1e) and two (2e) confined electrons as well as for theD0

andD− donor centres in the QD are in pairs close to each other, which means that the
corresponding radiative transitions could be hardly distinguishable.

Table 5. Calculated energy of dipole-allowed radiative transitions between the states withL = 0
andL = 1 of one electron (1e), two electrons (2e), D0 andD− donor centres and binding energy
W for theD− ground state in the GaAs/Al 0.2Ga0.8As quantum dot of radiusR. The results
for 1e andD0 correspond to the 1s→ 1p transitions and those for 2e andD− −11S→ 11P
transitions. The dash (—) means that the 11P state is unbound. The radius is expressed in nm,
the energy in meV.

R 1e 2e D0 D− W

5 97.0 — 112.5 — 106.5
10 40.0 42.1 46.3 45.5 176.3
20 11.7 13.3 16.0 15.4 202.5
30 5.5 6.8 9.1 8.5 208.3
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Having at our disposal the optimized trial wavefunction, we have also calculated the
expectation values of electron–donor(〈r1〉) and electron–electron(〈r12〉) distances. Figure 4
shows the results for the ground state(11S) and the excited state(21S) as functions of the
QD radius. The ground-state interparticle distances equal to those for the H− ion [24] in
the bulk-crystal limit, i.e. forR = 0, possess a minimum for smallR, and next increase
reaching again the bulk-crystal values for largeR. For the excited 21S state, the curves in
figure 4 begin at this value ofR, which corresponds to the critical binding for this state.
The interparticle distances for the excited state increase almost linearly withR, which is a
manifestation of a physical nature of binding of the excited state in the QD. This binding
mainly results from the confinement of electrons in the QD. Therefore, the interparticle
separations grow proportionally toR, but remain smaller than the QD radius. We have
obtained similar results for the average distances for the other excited states.

Figure 4. Expectation values of interparticle distances for theD− centre in the QD with
V0 = 40RD as functions of radiusR. Curves (a) and (b) show the results for the ground state
(11S): electron–donor〈r1〉 and electron–electron〈r12〉 distances, and curves (c) and (d) the
excited-state (21S): 〈r1〉 and〈r12〉, respectively. The donor Bohr radiusaD is the unit of length.

4. Discussion

The present calculations show that the energy spectrum of theD− centre in the QD exhibits
the following characteristic properties: (i) the spin-triplet states possess lower energy than
the corresponding spin-singlet states; (ii) the energy levels of the 2S states are located above
those of the 1P states, i.e. the Lamb shift (2S–1P energy difference) is positive; (iii) the 2S
states possess lower energy than the corresponding 1D states with the same spin. Property
(i) corresponds to the same order of energy levels for the He atom in the infinite space (cf
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table 1), i.e. it results from the bulk-like behaviour of theD− centre. However, the positive
Lamb shift (property (ii)) is opposite the negative Lamb shift observed for the He atom (cf
table 1), but is compatible with the order of the 2S and 1P energy levels of one electron in
the spherical potential well. Moreover, the same order of the 2S and 2P energy levels has
been obtained for the electron pair confined in the QD (cf table 3). The 2S–1D energy-level
order (property (iii)) is caused by the non-vanishing probability of finding the electron at
the Coulomb centre in the S state. Therefore, the bound states of theD− centre in the QD
possess a mixed bulk-like/well-like character.

The properties of theD− states discussed above have been obtained by the variational
method, which yields reliable upper bounds on the total energy, i.e. lower bounds on the
binding energy (provided that the ground-state energies of the electron andD0 centre in the
QD are exact, which is true in our case). In turn, the lower bounds to the binding energy
lead to the lower bounds to the critical effective capacity of the QD (7). This means that the
bound excited states of theD− centre can appear in a broader class of QD nanostructures
than these determined by the values given in table 4.

In the present work we have considered the six excited states of theD− centre in the
QD. For these states we have determined the conditions of binding in the form of inequality
(7). We expect that the criteria of binding in form (7) are also valid for the higher excited
states of theD− centre in the QD. A possibility of binding of a larger number of the
D− excited states can be inferred from the following argument. The subsystems ofD−

centre, i.e. the hydrogen-likeD0 centre and the electron in the QD, possess infinite and
finite numbers of bound states, respectively. The quantum states of theD− centre in the
QD are constructed from the corresponding quantum states of both the subsystems. As a
result, theD− centre always forms one bound state and can form bound excited states for
the sufficiently strong confinement potential. The number of these states should be finite
and increases with the increasing radius and potential-well depth.

We would like to comment about the question how the present results can be applied to
the GaAs/Al xGa1−xAs nanostructure (table 5) despite the change of the electron band mass
at the boundary of this QD, which is neglected in the present work. In order to answer this
question we have estimated the two-electron probability density for the 11S and 21S states
(cf figure 2b in [20]), which provides a measure of the penetration of electrons into the
barrier region. For the QD radiusR > ∼aD, this penetration appears to be negligibly small
[20], which is caused by the presence of the potential barrier of the heightV0 = 40RD.

The effect of spatially variable electron band mass can be taken into account by
modifying the kinetic-energy operator in (1) according to the BenDaniel–Duke model [26].
Such a modification is equivalent to the explicit incorporation of the jump of the electron
band mass into the kinetic-energy operator in (1) together with the requirement that the
envelope wavefunctionf for electrons in the spherical QD fulfills the boundary condition

1

mwe

df

dr

∣∣∣∣
r→R−

= 1

mbe

df

dr

∣∣∣∣
r→R+

(8)

wheremwe (mbe ) is the electron band mass of the potential-well (potential-barrier) region.
Taking onmwe = 0.067me0 andmbe = 0.084me0, whereme0 is the electron rest mass, we
have solved the Schrödinger equation for the electron andD0 centre in the spherical QD
by a finite-difference method, which allows us to include the jump of the electron band
mass and boundary condition (8) explicitly. The results (figure 5) show that taking into
account the change of the electron band mass at the GaAs/Al 0.2Ga0.8As boundary leads
to a slight lowering of the ground-state energy, i.e. increase of the binding energy. This
effect is negligibly small forR > aD, since the electron penetration into the barrier region
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additionally decreases owing to the increase of the electron band mass in Al0.2Ga0.8As.
These results provide the quantitative arguments for the neglect of the change of the electron
band mass at the QD boundary.

Figure 5. Ground-state energy of the electron andD0 centre in the spherical QD of radiusR
calculated with the change of the electron band mass at the QD boundary included (broken
curves) and excluded (full curves). The values of material parameters correspond to the
GaAs/Al 0.2Ga0.8As nanostructure.

As mentioned in section 3, an ion trapped in a microcavity [27] should exhibit properties
similar to those studied in the present work for charged donor centres in semiconductor QDs.
The present results could be applied to the H− ion confined in an ionic trap provided that
the confining potential was approximated by the spherical potential well. Based on the
results of the present paper, we expect that the bound excited states can exist for the H−

ion trapped in an ultra-high vacuum microcavity by external electric fields. Therefore the
spectroscopic experiments with these ions could reveal the transitions between the excited
and ground states considered in the present work.

5. Summary

The present paper provides the proof of binding for the excited states of theD− centre and
H− ion, which are confined in a spherical microcavity. Such a microcavity can be formed
either in a solid material as a semiconductor quantum-dot nanostructure or in a vacuum as
an ionic trap. It has been shown that several excited states of theD− and H− ions are
bound if the confinement potential is sufficiently strong. The criteria of the binding have
been determined in the simple analytical form.

The following physical interpretation can be given to an origin of binding of these
excited states: this property results from the confinement of electrons in the microcavity
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and the bound excited states of the two-electron systems correspond to those of the single
electron confined in the spherical potential well. We expect that the present results will be
helpful in planning future experiments for possible evidence of the excited states of theD−

centre in a semiconductor quantum dot and H− ion in an ionic trap.
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